Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №1 (с углубленным изучением отдельных предметов)»

Рассмотрена на заседании МО протокол № 1 от 31.08.2022

Рекомендована к утверждению методическим советом протокол № 1 от 31.08.2022

Утверждена приказом директора школы от 01.09.2022 №265

Рабочая программа

по химии

для 11 класса (естественнонаучный профиль)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

11 Рабочая программа ПО химии ДЛЯ класса составлена в соответствии с Фундаментальным ядром содержания общего образования, требованиями к результатам образовательной программы освоения основной среднего общего образования, представленными в Федеральном государственном образовательном стандарте среднего (полного) общего образования и Примерной программой по химии среднего общего образования.

Цели:

Формирование умения видеть и понимать ценность образования, значимость химического знания для каждого человека, независимо от его профессиональной деятельности.

Формирование умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию.

Формирование целостного представления о мире и роли химии в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности (природной, социальной, культурной, технической среды), используя для этого химические знания.

Приобретение опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, навыков безопасного обращения с веществами в повседневной жизни).

Компетентностный подход определяет следующие особенности содержания образования: оно представлено в виде трех тематических блоков, обеспечивающих формирование компетенций. Они предусматривают воспроизведение учащимися определенных сведений об органических веществах и химических процессах. применение теоретических знаний (понятий, законов, теорий химии) - это обеспечивает развитие учебно-познавательной и рефлексивной компетенций. Использование различных способов деятельности (составление формул и уравнений, решение расчетных задач и др.), а также проверку практических умений проводить химический эксперимент, соблюдая при этом правила техники безопасностиэто обеспечивает развитие коммуникативной компетенции учащихся. Таким образом, рабочая программа обеспечивает взаимосвязанное развитие совершенствование ключевых, обшепредметных и предметных компетенций.

Принципы отбора содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся.

Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся понимать причины и логику развития химических процессов открывает возможность для осмысленного восприятия всего, что происходит вокруг. Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.

Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет выпускнику адаптироваться в мире, где

объем информации, растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.

В учебном плане средней школы учебный предмет «Химия» включен в раздел «Естественные науки».

Программа учебного предмета «Химия» для среднего общего образования на углубленном уровне рассчитана на 170 ч (5 ч в неделю). Содержание обучения реализовано в учебнике химии, выпущенном издательством «Дрофа»:

Еремин В. В., Кузьменко Н. Е., Дроздов А. А., Лунин В. В. Химия. Углубленный уровень. 11 класс.

Создание образовательной среды с использованием оборудования «Точка роста» расширят спектр возможностей в преподавании дисциплин естественного цикла. В создаваемой образовательной среде учителя химии, реализующие образовательную программу на профильном уровне, могут по-новому формировать и развивать у школьников представления о современной естественно-научной картине мира, а не ретранслировать им знания с «самого передового края науки», «раскрывать, как устроен мир».«Школьный кванториум» позволяет так организовать учебный процесс, чтобы ученики самостоятельно конструировали свои знания и умения, «обучать познавать мир». Одна из основных идей Федерального государственного стандарта среднего общего образования (ФГОС СОО) состоит в обучении школьников научным методам познания. Очевидно, что подготовиться к уроку и организовать работу детей значительно проще, если идти к ним «с готовыми знаниями». Значительно сложнее и с практической точки зрения, и с теоретической реализовать идею «вместе с детьми к новым знаниям». В соответствии с требованиями ФГОС СОО учитель должен строить свою работу так, чтобы школьники овладели «умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты и анализировать их». Образовательная среда, создаваемая на базе «Школьного кванториума», позволяет строить учебный процесс таким образом, чтобы знания приобретались учащимися в процессе активной познавательной деятельности.

Использование оборудования «Точка роста» при реализации данной ОП позволяет создать условия:

для расширения содержания школьного химического образования на углублённом уровне;

для повышения познавательной активности обучающихся в естественно-научной области;

для развития личности ребёнка в процессе обучения химии, его способностей, формирования и удовлетворения социально значимых интересов и потребностей;

для осознанного выбора обучающимися будущей профессии, дальнейшего успешного образования и профессиональной деятельности;

для работы с одарёнными школьниками, организации их развития в различных областях образовательной, творческой деятельности;

для обеспечения самостоятельного проектирования обучающимися образовательной деятельности и эффективной самостоятельной работы по реализации индивидуальных учебных планов;

для выполнения индивидуального исследовательского проекта.

Федеральный государственный образовательный стандарт среднего общего образования устанавливает следующие требования к результатам освоения обучающимися основной образовательной программы:

к личностным результатам освоения основной образовательной программы:

- 1) воспитание российской гражданской идентичности, патриотизма, уважения к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- 2) формирование гражданской позиции как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;
- 3) готовность к служению Отечеству, его защите;
- 4) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 5) сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 6) толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- 7) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) нравственное сознание и поведение на основе усвоения общечеловеческих ценностей; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;

принятие и реализация ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;

бережное, ответственное и компетентное отношение

физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;

осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

сформированность экологического мышления, понимания влияния социальноэкономических процессов на состояние природной и социальной среды; приобретение опыта экологонаправленной деятельности;

ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;

к метапредметным результатам освоения основной образовательной программы:

умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты; владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

умение использовать средства информационных и коммуникационных технологий (далее — ИКТ) в решении когнитивных, коммуникативных и организационных задач

соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности; умение определять назначение и функции различных социальных институтов;

умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;

владение языковыми средствами — умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения;

к предметным результатам освоения основной образовательной программы, относящимся к учебному предмету «Химия»:

— на углубленном уровне:

сформированность системы знаний об общих химических закономерностях, законах, теориях;

сформированность умений исследовать свойства неорганических и органических веществ, объяснять закономерности протекания химических реакций, прогнозировать возможность их осуществления;

владение умениями выдвигать гипотезы на основе знаний о составе, строении вещества и основных химических законах, проверять их экспериментально, формулируя цель исследования;

владение методами самостоятельного планирования

проведения химических экспериментов с соблюдением правил безопасной работы с веществами и лабораторным оборудованием; сформированность умений описания, анализа и оценки достоверности полученного результата;

сформированность умений прогнозировать, анализировать и оценивать с позиций экологической безопасности последствия бытовой и производственной деятельности человека, связанной с переработкой веществ.

Критерии оценки предметных, метапредметных и личностных результатов

Достижение личностных результатов оценивается на качественном уровне (без отметки). Сформированность метапредметных и предметных умений оценивается в баллах по результатам:

стартовой диагностике готовности к изучению предмета «Химия» (диагностическая работа в начале учебного года, ходе которой проверяются предметные и метапредметные результаты предыдущего года). Результаты стартовой диагностики являются основанием для корректировки учебных программ и индивидуализации учебной деятельности (в том числе в рамках выбора уровня изучения предметов) с учетом выделенных актуальных проблем, характерных для класса в целом, и выявленных групп риска;

текущего контроля (устные и письменные опросы, лабораторные и практические работы, творческие работы, написание рефератов, учебные исследования и учебные проекты, задания с закрытым ответом и со свободно конструируемым ответом — полным и

частичным, индивидуальные и групповые формы оценки, само- и взаимооценка, рефлексия и др.). Текущая оценка может быть формирующей, т. е. поддерживающей и направляющей усилия учащегося, и диагностической, способствующей выявлению и осознанию учителем и учащимся существующих проблем в обучении. Результаты текущей оценки являются основой для индивидуализации учебной деятельности и корректировки индивидуального учебного плана, в том числе и сроков изучения темы/раздела/предметного курса;

тематической оценки (выполнение контрольных работ по отдельным темам или блокам тем, 4 работы в год). Результаты тематической оценки являются основанием для текущей коррекции учебной деятельности и ее индивидуализации;

промежуточного контроля, который проводится в конце каждого полугодия и в конце учебного года на основе результатов накопленной оценки и результатов выполнения тематических проверочных работ;

итогового контроля, который осуществляется на основании результатов внутренней (выполнение итоговой работы) и/или внешней оценки (прохождение государственной итоговой аттестации (ГИА)).

1.1. Планируемые личностные результаты освоения учебного предмета «Химия» на углубленном уровне

Планируемыми личностными результатами в рамках освоения учебного предмета «Химия» на углубленном уровне являются:

- в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:
- принятие и реализацию ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
- в сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре:
- мировоззрение, соответствующее современному уровню развития науки, значимость науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственности за состояние природных ресурсов, умений и навыков разумного природопользования, нетерпимого отношения к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- в сфере отношений обучающихся к труду, в сфере социально-экономических отношений:
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности.
- 1.2. Планируемые метапредметные результаты освоения учебного предмета «Химия» на углубленном уровне

Планируемые метапредметные результаты в рамках освоения учебного предмета «Химия» на углубленном уровне представлены тремя группами универсальных учебных действий (УУД).

Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- определять несколько путей достижения поставленной цели;
- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.
- 2. Познавательные универсальные учебные действия Выпускник научится:
- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск
- ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).

3. Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и виртуального);

- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.
- 1.3. Планируемые предметные результаты освоения учебного предмета «Химия» на углубленном уровне
- В результате изучения учебного предмета «Химия» на уровне среднего общего образования

выпускник на углубленном уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической дея-тельности человека, взаимосвязь между химией и другими естественными науками;
- сопоставлять исторические вехи развития химии историческими периодами развития промышленности и науки для проведения анализа состояния, путей развития науки и технологий;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А. М. Бутлерова, строения атома, химической связи, электролитической диссоциации кислот, оснований и солей, а также устанавливать причинно-следственные связи между свойствами вещества и его составом и строением;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы неорганических и органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- характеризовать физические свойства неорганических и органических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решетки;
- характеризовать закономерности в изменении химических свойств простых веществ, водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических и органических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;

- устанавливать генетическую связь между классами неорганических и органических веществ для обоснования принципиальной возможности получения неорганических органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших неорганических и органических веществ;
- определять характер среды в результате гидролиза неорганических и органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических обменных процессах и промышленности;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических и органических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению неорганических и органических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- находить взаимосвязи между структурой и функцией, причиной и следствием, теорией и фактами при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.

Выпускник на углубленном уровне получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;

- интерпретировать данные о составе и строении веществ, полученные с помощью современных физико-химических методов;
- описывать состояние электрона в атоме на основе современных квантовомеханических представлений о строении атома для объяснения результатов спектрального анализа веществ;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ;
- прогнозировать возможность протекания окислительно-восстановительных реакций, лежащих в основе природных и производственных процессов.

Личностные результаты

Обучающийся получит возможность для формирования следующих личностных УУД:

- осознавать свою гражданскую идентичность, патриотизм, уважение к своему народу, ответственность перед Родиной, гордость за неё; осознанно формировать и отстаивать свою гражданскую позицию как активного и ответственного члена российского общества;
- формировать своё мировоззрение, соответствующее современному уровню развития науки и общественной практики;
- непрерывно развивать в себе готовность и способность к самостоятельной, творческой и ответственной деятельности;
- сотрудничать со сверстниками и взрослыми в образовательной, общественно полезной, учебно-исследовательской и проектной деятельности;
- формировать сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- осуществлять осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов;

формировать экологическое мышление, приобрести опыт эколого-направленной деятельности

Метапредметные результаты

<u>Регулятивные</u>

Обучающийся получит возможность для формирования следующих регулятивных YYI:

- выявлять и формулировать учебную проблему;
- определять цели деятельности и составлять её план, контролировать и корректировать деятельность;
- выбирать успешные стратегии в различных ситуациях; осознавать причины своего успеха или неуспеха, находить способы выхода из ситуации неуспеха;
- продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты.

Познавательные

- осуществлять поиск различных алгоритмов решения практических задач, применять различные методы познания;
- осуществлять самостоятельную информационно-познавательную деятельность, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- использовать средства информационных и коммуникационных технологий (ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований безопасности;

- строить логические рассуждения, формулировать умозаключения на основе выяв ленных причинно-следственных связей;
- создавать модели изучаемых объектов, выделять в них существенные характеристики, преобразовывать модели;
- преобразовывать информацию из одного вида в другой; выбирать удобную форму фиксации и представления информации;
- владеть методами познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные результаты

Обучающийся научится:

- исследовать свойства неорганических и органических веществ, объяснять закономерности протекания химических реакций, прогнозировать возможность их осуществления;
- выдвигать гипотезы на основе знаний о составе, строении вещества и основных химических законах, проверять их экспериментально, формулируя цель исследования;
- владеть методами самостоятельного планирования и проведения химических экспериментов с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- описывать, анализировать и оценивать достоверность полученного результата;
- прогнозировать, анализировать и оценивать с позиций экологической безопасности последствия бытовой и производственной деятельности человека, связанной с переработкой веществ.

Обучающийся получит возможность научиться:

- самостоятельно формировать систему собственных знаний об общих химических закономерностях, законах, теориях;
- прогнозировать свойства веществ на основе их строения;
- использовать полученные знания в быту;
- понимать и объяснять роль химических процессов, протекающих в природе;
- планировать и осуществлять учебные химические эксперименты.

II. Содержание рабочей программы

Тема 1. Неметаллы (50 ч.)

Классификация неорганических веществ. Элементы металлы и неметаллы и их положение в Периодической системе.

Водород. Получение, физические и химические свойства (реакции с металлами и неметаллами, восстановление оксидов и солей). Гидриды. Топливные элементы.

Галогены. Общая характеристика подгруппы. Физические свойства простых веществ. Закономерности изменения окислительной активности галогенов в соответствии с их положением в периодической таблице. Порядок вытеснения галогенов из растворов галогенидов. Особенности химии фтора. Хлор — получение в промышленности и лаборатории, реакции с металлами и неметаллами. Взаимодействие хлора с водой и растворами щелочей. Кислородные соединения хлора. Гипохлориты, хлорат и перхлораты как типичные окислители. Особенности химии брома и йода. Качественная реакция на йод. Галогеноводороды — получение, кислотные и восстановительные свойства. Соляная кислота и ее соли. Качественные реакции на галогенид - ионы.

Элементы подгруппы кислорода. Общая характеристика подгруппы. Физические свойства простых веществ. Озон как аллотропная модификация кислорода. Получение озона. Озон как окислитель. Позитивная и негативная роль озона в окружающей среде. Сравнение свойств озона и кислорода. Вода и пероксид водорода как водородные соединения кислорода — сравнение свойств. Пероксид водорода как окислитель и восстановитель. Пероксиды

Сера и её соединения. Аллотропия серы. Физические и химические свойства серы (взаимодействие с металлами, кислородом, водородом, растворами щелочей, кислотамиокислителями). Сероводород — получение, кислотные и восстановительные свойства. Сульфиды. Сернистый газ как кислотный оксид. Окислительные и восстановительные свойства сернистого газа. Получение сернистого газа в промышленности и лаборатории. Сернистая кислота и ее соли. Серный ангидрид. Серная кислота. Свойства концентрированной и разбавленной серной кислоты. Действие концентрированной серной кислоты на сахар, металлы, неметаллы, сульфиды. Термическая устойчивость сульфатов. Качественная реакция на серную кислоту и ее соли. Тиосерная кислота и тиосульфаты.

Азот и его соединения. Элементы подгруппы азота. Общая характеристика подгруппы. Физические свойства простых веществ. Строение молекулы азота. Физические и химические свойства азота. Получение азота в промышленности и лаборатории. Нитриды. Аммиак — его получение, физические и химические свойства. Основные свойства водных растворов аммиака. Соли аммония. Поведение солей аммония при нагревании. Аммиак как восстановитель. Применение аммиака. Оксиды азота, их получение и свойства. Оксид азота(I). Окисление оксида азота(II) кислородом. Димеризация оксида азота(IV). Азотистая кислота и ее соли. Нитриты как окислители и восстановители. Азотная кислота — физические и химические свойства, получение. Отношение азотной кислоты к металлам и неметаллам. Зависимость продукта восстановления азотной кислоты от активности металла и концентрации кислоты. Термическая устойчивость нитратов.

Фосфор и его соединения Аллотропия фосфора. Химические свойства фосфора (реакции с кислородом, галогенами, металлами, сложными веществами-окислителями, щелочами). Получение и применение фосфора. Фосфорный ангидрид. Ортофосфорная и метафосфорная кислоты и их соли. Качественная реакция на ортофосфаты. Разложение ортофосфорной кислоты. Пирофосфорная кислота и пирофосфаты. Фосфин. Хлориды фосфора. Оксид фосфора(III), фосфористая кислота и ее соли.

Углерод. Аллотропия углерода. Сравнение строения и свойств графита и алмаза. Фуллерен как новая молекулярная форма углерода. Графен как монослой графита. Углеродные нанотрубки. Уголь. Активированный уголь. Адсорбция. Химические свойства угля. Карбиды. Гидролиз карбида кальция и карбида алюминия. Карбиды переходных металлов как сверхпрочные материалы. Оксиды углерода. Образование угарного газа при неполном

сгорании угля. Уголь и угарный газ как восстановители. Реакция угарного газа с расплавами щелочей. Синтез формиатов и оксалатов. Углекислый газ. Угольная кислота и ее соли. Поведение средних и кислых карбонатов при нагревании.

Кремний. Свойства простого вещества. Реакции с хлором, кислородом, растворами щелочей. Оксид кремния в природе и технике. Кремниевые кислоты и их соли. Гидролиз силикатов. Силан — водородное соединение кремния.

Б о р. Оксид бора. Борная кислота и ее соли. Бура.

Демонстрации.

1. Горение водорода. 2. Получение хлора (опыт в пробирке). 3. Опыты с бромной водой. 4. Окислительные свойства раствора гипохлорита натрия. 5. Плавление серы. 6. Горение серы в кислороде. 7. Взаимодействие железа с серой. 8. Горение сероводорода. 9. Осаждение сульфидов. 10. Свойства сернистого газа. 11. Действие концентрированной серной кислоты на медь и сахарозу. 12. Растворение аммиака в воде. 13. Основные свойства раствора аммиака. 14. Каталитическое окисление аммиака. 15. Получение оксида азота(II) и его окисление на воздухе. 16. Действие азотной кислоты на медь. 17. Горение фосфора в кислороде. 18. Превращение красного фосфора в белый и его свечение в темноте. 19. Взаимодействие фосфорного ангидрида с водой. 20. Образцы графита, алмаза, кремния. 21. Горение угарного газа. 22. Тушение пламени углекислым газом. 23. Разложение мрамора.

Лабораторные опыты.

- 1. Получение хлора и изучение его свойств.
- 2. Ознакомление со свойствами хлорсодержащих отбеливателей. Качественная реакция на галогенид ионы.
- 3. Свойства брома, йода и их солей. Разложение пероксида водорода. Окисление иодид -ионов пероксидом водорода в кислой среде.
- 4. Изучение свойств серной кислоты и ее солей.
- 5. Изучение свойств водного раствора аммиака.
- 6. Свойства солей аммония. Качественная реакция на фосфат-ион.
- 7. Качественная реакция на карбонат-ион. Разложение гидрокарбоната натрия.
- 8. Испытание раствора силиката натрия индикатором.
- 9. Ознакомление с образцами природных силикатов.

Лабораторный опыт «Сравнительное определение растворимости галогенидов серебра»

Лабораторный опыт «Взаимодействие гидроксида бария с серной кислотой» Оборудование «Точка роста»: Датчик электропроводности, магнитная мешалка, датчик электропроводности, бюретка

Практические работы

Практическая работа №1. Получение водорода.

Практическая работа № 2. Получение хлороводорода и соляной кислоты.

Практическая работа № 3. Получение аммиака и изучение его свойств.

Практическая работа №4. Получение углекислого газа.

Практическая работа № 5. Выполнение экспериментальных задач по теме «Неметаллы».

Контрольная работа №1 по теме «Неметаллы».

- Знать вещества и материалы, широко используемые в практике: графит, кварц, стекло, цемент, минеральные удобрения, минеральные и органические кислоты, щелочи, аммиак, углеводороды, фенол, анилин, метанол, этанол, этиленгликоль, глицерин, формальдегид, ацетальдегид, ацетон, глюкоза, сахароза, крахмал, клетчатка, аминокислоты, белки, искусственные волокна, каучуки, пластмассы, жиры, мыла и моющие средства;
- Уметь характеризовать: s- , p- -элементы по их положению в периодической системе Д. И. Менделеева; общие химические свойства неметаллов, основных

классов неорганических соединений; строение и свойства органических соединений (углеводородов, спиртов, фенолов, альдегидов и кетонов, карбоновых кислот, аминов, аминокислот и углеводов);

- Уметь выполнять химический эксперимент: по распознаванию важнейших неорганических и органических веществ; получению конкретных веществ, относящихся к изученным классам соединений;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- — использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- — владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- — осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- — критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- — находить взаимосвязи между структурой и функцией, причиной и следствием, теорией и фактами при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- — представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.
- осуществлять самостоятельный поиск химической информации (справочных, научных использованием различных источников научноизданий, компьютерных баз данных, ресурсов использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

- работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;
- сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);
- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;

- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- составлять рецензию на текст;
- осуществлять доказательство от противного;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 2. Общие свойства металлов (4 ч.)

Общий обзор элементов - металлов. Свойства простых веществ-металлов. Металлические кристаллические решетки. Сплавы. Характеристика наиболее известных сплавов. Получение и применение металлов.

Тема 3. Металлы главных подгрупп. (18 ч.)

Щелочные металлы— общая характеристика подгруппы, характерные реакции натрия и калия. Свойства щелочных металлов. Получение щелочных металлов. Сода и едкий натр — важнейшие соединения натрия.

Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов.

Алюминий. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления.

Олово и свинец. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор.

Тема 4. Металлы побочных подгрупп. (28 ч.)

Металлы побочных подгрупп. Особенности строения атомов переходных металлов.

Хром. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления. Амфотерные свойства оксида и гидроксида хрома(III). Окисление солей хрома(III) в хроматы. Взаимные переходы хроматов и дихроматов. Хроматы и дихроматы как окислители.

Марганец — физические и химические свойства (отношение к кислороду, хлору, растворам кислот). Оксид марганца(IV) как окислитель и катализатор. Перманганат калия как окислитель. Манганат калия и его свойства.

Железо. Нахождение в природе. Значение железа для организма человека. Физические свойства железа. Сплавы железа с углеродом. Химические свойства железа (взаимодействие с кислородом, хлором, серой, углем, кислотами, растворами солей). Сравнение кислотно-основных и окислительно-восстановительных свойств гидроксида железа(II) и гидроксида железа(III). Соли железа(III) и железа(III). Методы перевода солей железа(III) в соли железа(III) и обратно. Окислительные свойства соединений железа(III) в реакциях с восстановителями (иодидом, медью). Цианидные комплексы железа. Качественные реакции на ионы железа(III) и (III).

Medb. Нахождение в природе. Физические и химические свойства (взаимодействие с кислородом, хлором, серой, кислотами-окислителями). Соли меди(II). Медный купорос. Аммиакаты меди(I) и меди(II). Получение оксида меди(I) восстановлением гидроксида меди(II) глюкозой.

Серебро. Физические и химические свойства (взаимодействие с серой, хлором, кислотамиокислителями). Осаждение оксида серебра при действии щелочи на соли серебра. Аммиакаты серебра как окислители. Качественная реакция на ионы серебра.

Золото. Физические и химические свойства (взаимодействие с хлором, «царской водкой». Способы выделения золота из золотоносной породы.

Цинк. Физические и химические свойства (взаимодействие с галогенами, кислородом, серой, растворами кислот и щелочей). Амфотерность оксида и гидроксида цинка.

Ртуть. Представление о свойствах ртути и ее соединениях.

Демонстрации.

- 1. Коллекция металлов.
- 2. Коллекция минералов и руд.
- 3. Коллекция «Алюминий».
- 4. Коллекция «Железо и его сплавы»
- 5. Взаимодействие натрия с водой.
- 6. Окрашивание пламени солями щелочных и щелочноземельных металлов.
- 7. Взаимодействие кальция с водой.
- 8. Плавление алюминия.
- 9. Взаимодействие алюминия со щелочью.
- 10. Взаимодействие хрома с соляной кислотой без доступа воздуха.
- 11. Осаждение гидроксида хрома(III) и окисление его пероксидом водорода.
- 12. Взаимные переходы хроматов и дихроматов.
- 13. Разложение дихромата аммония.
- 14. Алюмотермия.
- 15. Осаждение гидроксида железа(III) и окисление его на воздухе.
- 16. Выделение серебра из его солей действием меди.

Лабораторные опыты.

- 10. Окрашивание пламени соединениями щелочных металлов.
- 11. Ознакомление с минералами и важнейшими соединениями щелочных металлов.
- 12. Свойства соединений щелочных металлов.
- 13. Окрашивание пламени солями щелочноземельных металлов.
- 14. Свойства магния и его соединений.
- 15. Свойства соединений кальция.
- 16. Жесткость воды.
- 17. Взаимодействие алюминия с кислотами и щелочами.
- 18. Амфотерные свойства гидроксида алюминия.
- 19. Свойства олова, свинца и их соединений.
- 20. Свойства солей хрома.
- 21. Свойства марганца и его соединений.
- 22. Изучение минералов железа.
- 23. Свойства железа. Качественные реакции на ионы железа. Получение оксида меди(I).
- 24. Свойства меди, ее сплавов и соединений.
- 25. Свойства цинка и его соединений.

Лабораторный опыт «Окисление железа во влажном воздухе»

Оборудование «Точка роста»: Датчик давления, датчик кислорода

Практические работы

Практическая работа №6. Получение горькой соли (семиводного сульфата магния).

Практическая работа № 7. Получение алюмокалиевых квасцов.

Практическая работа №8. Выполнение экспериментальных задач по теме «Металлы главных подгрупп».

Практическая работа №9. Получение медного купороса.

Практическая работа №10. Получение железного купороса.

Практическая работа № 11. Выполнение экспериментальных задач по теме «Металлы побочных подгрупп».

Контрольная работа N_2 2 по теме «Металлы».

- вещества и материалы, широко используемые в практике: основные металлы и сплавы, минеральные удобрения, минеральные и органические кислоты, щелочи, аммиак, углеводороды, фенол, анилин, метанол, этанол, этиленгликоль, глицерин, формальдегид, ацетальдегид, ацетон, глюкоза, сахароза, крахмал, клетчатка, аминокислоты, белки, искусственные волокна, каучуки, пластмассы, жиры, мыла и моющие средства;
- уметь характеризовать: s- , p- и d-элементы по их положению в периодической системе Д. И. Менделеева; общие химические свойства металлов, основных классов неорганических соединений; строение и свойства органических соединений (углеводородов, спиртов, фенолов, альдегидов и кетонов, карбоновых кислот, аминов, аминокислот и углеводов);
- выполнять химический эксперимент: по распознаванию важнейших неорганических и органических веществ; получению конкретных веществ, относящихся к изученным классам соединений;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- — использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- — владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- — осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- — критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- — находить взаимосвязи между структурой и функцией, причиной и следствием, теорией и фактами при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- — представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.
- осуществлять самостоятельный поиск химической информации источников использованием различных (справочных, научных и научнопопулярных Интернета); изданий, компьютерных баз данных, ресурсов

использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

Метапредметные результаты обучения

- работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;
- сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);
- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- составлять рецензию на текст;
- осуществлять доказательство от противного;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 5. Строение вещества (14 ч.)

Строение атома. Нуклиды. Изотопы. Типы радиоактивного распада. Термоядерный синтез. Получение новых элементов. Ядерные реакции. Строение электронных оболочек атомов. Представление о квантовой механике. Квантовые числа. Атомные орбитали. Радиус атома. Электроотрицательность.

Химическая связь. Виды химической связи. Ковалентная связь и ее характеристики (длина связи, полярность, поляризуемость, кратность связи). Ионная связь. Металлическая связь. *Строение твердых тел*. Кристаллические и аморфные тела. Типы кристаллических решеток металлов и ионных соединений. Межмолекулярные взаимодействия. Водородная связь.

Демонстрации. 1. Кристаллические решетки. 2. Модели молекул.

- понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;
- знать важнейшие химические понятия: вещество, химический элемент, атом, молекула, масса атомов и молекул, ион, радикал, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения; комплексные соединения, дисперсные системы, истинные растворы, углеродный скелет, функциональная группа, гомология, структурная и пространственная изомерия, индуктивный и мезомерный эффекты, электрофил, нуклеофил;
- знать основные законы химии: закон сохранения массы веществ, периодический закон, закон постоянства состава, закон Авогадро;
- знать основные теории химии: строения атома; вещества, химической связи
- уметь определять: валентность и степень окисления химических элементов, заряд иона, тип кристаллической решетки;
- уметь объяснять: зависимость свойств химического элемента и образованных им веществ от положения в периодической системе Д. И. Менделеева;
- проводить расчеты по химическим формулам и уравнениям реакций;
- осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научно-

популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

Метапредметные результаты обучения

- работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;
- сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);
- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- составлять рецензию на текст;
- осуществлять доказательство от противного;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 6. Теоретическое описание химических реакций (27 ч.)

Тепловой эффект химической реакции. Эндотермические и экзотермические реакции. Закон Гесса. Теплота образования вещества. Энергия связи. Понятие об энтальпии. Понятие об энтропии. Второй закон термодинамики. Энергия Гиббса и критерии самопроизвольности химической реакции.

Скорость химической реакции и ее зависимость от природы реагирующих веществ, концентрации реагентов, температуры, наличия катализатора, площади поверхности реагирующих веществ. Закон действующих масс. Правило Вант -Гоффа. Понятие об энергии активации и об энергетическом профиле реакции. Гомогенный и гетерогенный катализ. Примеры каталитических процессов в технике и в живых организмах. Ферменты как биологические катализаторы.

Обратимые химические реакции. Химическое равновесие. Принцип Ле Шателье. Константа равновесия. Равновесие в растворах. Константы диссоциации. Расчет рН растворов сильных кислот и щелочей. *Произведение растворимости*.

Ряд активности металлов. Понятие о стандартном электродном потенциале и электродвижущей силе реакции. Химические источники тока: гальванические элементы, аккумуляторы и топливные элементы. Электролиз расплавов и водных растворов электролитов. Законы электролиза.

Демонстрации.

- 1. Экзотермические и эндотермические химические реакции.
- 2. Тепловые явления при растворении серной кислоты и аммиачной селитры.
- 3. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты.
- 4. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры.
- 5. Разложение пероксида водорода с помощью неорганических катализаторов и природных объектов, содержащих каталазу.

Экспериментальное определение порядков скорости химической реакции

Экспериментальное определение температурного коэффициента скорости реакции (коэффициента Вант-Гоффа) и энергии активации

Экспериментальное определение концентрации ионов меди в выданном растворе

Оборудование «Точка роста»: Терморезисторный датчик температуры, магнитная мешалка, баня комбинированная лабораторная, датчик рН, датчик электропроводности, бюретка, автоматическая микропипетка переменного объёма на 100—1000 мкл

Лабораторные опыты.

Факторы, влияющие на взаимодействие металла с растворами кислот. Смещение химического равновесия при увеличении концентрации реагентов и продуктов. Каталитическое разложение пероксида водорода

Лабораторный опыт «Определение теплового эффекта образования кристаллогидратов из безводных солей»

Лабораторный опыт «Зависимость электропроводности раствора от растворителя» Лабораторный опыт «Сильные и слабые электролиты»

Лабораторный опыт «Зависимость концентраций ионов водорода от степени разбавления сильного и слабого электролита»

Лабораторный опыт «Прямое кондуктометрическое определение концентрации соли в растворе»

Лабораторный опыт «Работа свинцового аккумулятора»

Оборудование «Точка роста»: Терморезисторный датчик температуры, магнитная мешалка, лабораторные весы, датчик электропроводности, датчик рH, датчик напряжения, источник питания лабораторный

Практические работы

Практическая работа №12. Скорость химической реакции.

Практическая работа №13. Химическое равновесие.

Контрольная работа №3. Теоретические основы химии.

- понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;
- знать важнейшие химические понятия: электролитическая диссоциация, кислотно-основные реакции в водных растворах, гидролиз, окисление и восстановление, электролиз, скорость химической реакции, механизм реакции, катализ, тепловой эффект реакции, энтальпия, теплота образования, энтропия, химическое равновесие, константа равновесия, углеродный скелет, функциональная группа, гомология, структурная и пространственная изомерия, индуктивный и мезомерный эффекты, электрофил, нуклеофил, основные типы реакций в неорганической и органической химии;
- основные законы химии: закон сохранения массы веществ, периодический закон, закон постоянства состава, закон Авогадро, закон Гесса, закон действующих масс в кинетике и термодинамике;
- основные теории химии: строения атома, химической связи, электролитической диссоциации, кислот и оснований, строения органических соединений (включая стереохимию), химическую кинетику и химическую термодинамику;
- называть изученные вещества по «тривиальной» и международной номенклатурам;
- определять: валентность и степень окисления химических элементов, заряд иона, тип химической связи, пространственное строение молекул, тип кристаллической решетки, характер среды в водных растворах, окислитель и восстановитель, направление смещения равновесия под влиянием различных факторов, изомеры и гомологи, принадлежность веществ к различным классам органических соединений, характер взаимного влияния атомов в молекулах, типы реакций в неорганической и органической химии;

- объяснять: зависимость свойств химического элемента и образованных им веществ от положения в периодической системе Д. И. Менделеева; зависимость свойств неорганических веществ от их состава и строения; природу и способы образования химической связи; зависимость скорости химической реакции от различных факторов, реакционной способности органических соединений от строения их молекул;
- проводить расчеты по химическим формулам и уравнениям реакций;
- осуществлять самостоятельный поиск химической информации использованием различных источников (справочных, научных и научноданных, популярных изданий, компьютерных баз ресурсов Интернета); использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

Метапредметные результаты обучения

- работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;
- сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);
- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- составлять рецензию на текст;
- осуществлять доказательство от противного;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 7. Химическая технология (10 ч.)

Основные принципы химической технологии. Производство серной кислоты контактным способом. Химизм процесса. Сырье для производства серной кислоты. Технологическая схема процесса, процессы и аппараты. Производство аммиака. Химизм процесса. Определение оптимальных условий проведения реакции. Принцип циркуляции и его реализация в технологической схеме.

Металлургия. Черная металлургия. Доменный процесс (сырье, устройство доменной печи, химизм процесса). Производство стали в кислородном конвертере и в электропечах.

Органический синтез. Синтезы на основе синтез-газа. Производство метанола.

Экология и проблема охраны окружающей среды. Зеленая химия.

Демонстрации. 1. Сырье для производства серной кислоты.

- 2. Модель кипящего слоя.
- 3. Железная руда.
- 4. Образцы сплавов железа.

- понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;
- знать важнейшие химические понятия: электролитическая диссоциация, кислотно-основные реакции в водных растворах, гидролиз, окисление и восстановление, электролиз, скорость химической реакции, механизм реакции, катализ, тепловой эффект реакции, энтальпия, теплота образования, энтропия, химическое равновесие, константа равновесия, углеродный скелет, функциональная

группа, гомология, структурная и пространственная изомерия, индуктивный и мезомерный эффекты, электрофил, нуклеофил, основные типы реакций в неорганической и органической химии;

- основные законы химии: закон сохранения массы веществ, периодический закон, закон постоянства состава, закон Авогадро, закон Гесса, закон действующих масс в кинетике и термодинамике;
- основные теории химии: строения атома, химической связи, электролитической диссоциации, кислот и оснований, строения органических соединений (включая стереохимию), химическую кинетику и химическую термодинамику;
- называть изученные вещества по «тривиальной» и международной номенклатурам;
- проводить расчеты по химическим формулам и уравнениям реакций;
- поиск химической осуществлять самостоятельный информации использованием различных источников (справочных, научных и научнопопулярных изданий, компьютерных баз данных, ресурсов Интернета): использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

Метапредметные результаты обучения

- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- составлять рецензию на текст;
- осуществлять доказательство от противного;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 8. Химия в повседневной жизни (8 ч.)

Химия пищи. Жиры, белки, углеводы, витамины. Пищевые добавки, их классификация. Запрещенные и разрешенные пищевые добавки. Лекарственные средства. Краски и пигменты. Принципы окрашивания тканей.

Предметные результаты обучения

- понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;
- называть изученные вещества по «тривиальной» и международной номенклатурам;
- проводить расчеты по химическим формулам и уравнениям реакций;
- самостоятельный осуществлять поиск химической информации использованием различных источников (справочных, научных и научнокомпьютерных Интернета): популярных изданий, баз данных, ресурсов использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 9. Химия на службе общества (7 ч.)

Химия в строительстве. Цемент, бетон. Стекло и керамика. Традиционные и современные керамические материалы. Сверхпроводящая керамика. Бытовая химия. Отбеливающие средства. Химия в сельском хозяйстве. Инсектициды и пестициды. Средства защиты растений. Репелленты.

Предметные результаты обучения

- понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;
- называть изученные вещества по «тривиальной» и международной номенклатурам;
- проводить расчеты по химическим формулам и уравнениям реакций;
- осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научнопопулярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

Метапредметные результаты обучения

- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 10. Химия в современной науке (4 ч.)

Особенности современной науки. Методология научного исследования. Профессия химика. Математическая химия.

Поиск химической информации. Работа с базами данных.

Демонстрации.

- 1. Пищевые красители.
- 2. Крашение тканей.
- 3. Отбеливание тканей.
- 4. Керамические материалы.
- 5. Цветные стекла.
- 6. Коллекция «Топливо и его виды».

Лабораторные опыты.

- 27. Знакомство с моющими средствами. Знакомство с отбеливающими средствами.
- 28. Клеи.
- 29. Знакомство с минеральными удобрениями и изучение их свойств.

Лабораторный опыт «Экспериментальная проверка гипотезы. Определение содержания карбоната кальция в различных объектах»

Лабораторный опыт «Исследование растворов хозяйственного и туалетного мыла, синтетических моющих средств»

Оборудование «Точка роста»: Лабораторные весы, нагревательная плитка, датчик pH

Контрольная работа № 5. Итоговая контрольная работа.

- понимать роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;
- называть изученные вещества по «тривиальной» и международной номенклатурам;

- проводить расчеты по химическим формулам и уравнениям реакций;
- осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научнопопулярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах.

Метапредметные результаты обучения

- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Расчетные задачи

Вычисление массовой доли химического элемента в соединении.

Установление простейшей формулы вещества по массовым долям химических элементов.

Расчет объемных отношений газов при химических реакциях.

Вычисление массы веществ или объема газов по известному количеству вещества одного из вступивших в реакцию или получающихся веществ.

Расчет теплового эффекта по данным о количестве одного из участвующих в реакции веществ и выделившейся (поглощенной) теплоты.

Вычисления по уравнениям, когда одно из веществ взято в виде раствора определенной концентрации.

Вычисления по уравнениям, когда одно или несколько веществ взяты в избытке.

Вычисление массы или объема продукта реакции по известной массе или объему исходного вещества, содержащего примеси.

Определение выхода продукта реакции от теоретически возможного.

Расчет энтальпии реакции.

Расчет изменения энтропии в химическом процессе.

Расчет изменения энергии Гиббса реакции.

Расчет массы или объема растворенного вещества и растворителя для приготовления определенной массы или объема раствора с заданной концентрацией (массовой, молярной, моляльной).

ТЕМЫ ПРОЕКТОВ

11 класс

- 1. Исследуем старые стекла.
- 2. Микроэлементы для растений.
- 3. Средство от гололеда.
- 4. Производим индикаторы.
- 5. Нужно ли заменять синтетическую ваниль натуральной?
- 6. Готовим масляную краску.
- 7. Готовим состав для снятия ржавчины.
- 8. Исследуем взаимодействие медного купороса с содой.
- 9. Готовим термокраски.
- 10. Растим дендриты.
- 11. Готовим магнитные жидкости.
- 12. Изучаем вклад российских химиков в развитие науки.
- 13. Изучаем лед.
- 14. Окрашенная поваренная соль.
- 15. Собираем коллекцию минералов.

- 16. Химическая радуга.17. Возникновение окраски в растворе.

III. Тематический план

Номер темы	Тема	Количество часов	В том числе	
			практические работы	контрольные работы
1	Неметаллы	50	5	1
2	Общие свойства металлов	4	-	
3	Металлы главных подгрупп	18	5	-
4	Металлы побочных подгрупп	28	1	1
5	Строение вещества	14	-	-
6	Теоретическое описание химических реакций	27	2	1
7	Химическая технология	10	-	-
8	Химия в повседневной жизни	8	-	1
9	Химия на службе общества	7		
10	Химия в современной науке	4		
	ИТОГО:	170	13	4